Enrollment No:	 Exam Seat No:

C.U.SHAH UNIVERSITY

Summer Examination-2022

Subject Name: Complex Analysis

Subject Code: 4SC05COA1 Branch: B.Sc. (Mathematics)

Semester: 5 Date: 22/04/2022 Marks: 70 Time: 11:00 To 02:00

Instructions:

- (1) Use of Programmable calculator & any other electronic instrument is prohibited.
- (2) Instructions written on main answer book are strictly to be obeyed.
- (3) Draw neat diagrams and figures (if necessary) at right places.
- (4) Assume suitable data if needed.

Q-1 Attempt the following questions: (14)

a) Evaluate:
$$\int_{c} \frac{1}{z} dz$$
; C: $|z| = 1$. (02)

b) Is the function
$$f(z) = z^2$$
 is analytic? (01)

d) A function
$$u(x, y)$$
 is said to be harmonic if and only if _____. (01)

(a)
$$u_{xx} + u_{yy} = 0$$
 (b) $u_{xx} - u_{yy} = 0$ (c) $u_{xy} + \overline{u_{yx}} = 0$ (d) None

e) A function
$$f(z)$$
 is analytic if (01)

- (a) Real part of f(z) is analytic (b) imaginary part of f(z) is analytic (c) both (a) and (b) (d) None of these
- f) If $f(z) = z \overline{z}$ then f(z) is _____.

f) If
$$f(z) = z - \bar{z}$$
 then $f(z)$ is _____. (02)
(a) Purely real (b) Purely imaginary (c) Zero (d) None

g) Which are the fixed points of
$$w = \frac{2z-3}{z+2}$$
? (02)

Attempt any four questions from Q-2 to Q-8

a) Show that
$$f(z) =\begin{cases} \frac{x^3(1+i)-y^3(1-i)}{x^2+y^2} ; z \neq 0 \\ 0 ; z = 0 \end{cases}$$
 is continuous at origin. (05)
b) Suppose $f(z) = u + iv, z_0 = x_0 + iy_0$ and $w_0 = u + iv$ then $\lim_{z \to z_0} f(z) = w_0$ (05)

b) Suppose
$$f(z) = u + iv$$
, $z_0 = x_0 + iy_0$ and $w_0 = u + iv$ then $\lim_{z \to z_0} f(z) = w_0$ (05) if and only $\lim_{(x,y)\to(x_0,y_0)} u(x,y) = u_0 f$ and $\lim_{(x,y)\to(x_0,y_0)} v(x,y) = v_0$.

c) Prove that
$$f(z) = \bar{z}$$
 is no-where differentiable. (04)

Q-3	Attempt all questions	(14)
-----	-----------------------	------

- a) Show that $u(x, y) = 2x x^3 + 3xy^2$ is harmonic. Find harmonic conjugate of u(x, y). Also find analytic function. (05)
- b) Evaluate $\int_C z^2 dz$ where C is the path joining the points z = 1 + i to z = 2(1 + 2i) along the straight line joining 1 + i to 2(1 + 2i).
- c) Evaluate: $\int_{c} \frac{e^{z}}{(z-3)(z-1)} dz$, where *c* is circle |z| = 4. (04)

Q-4 Attempt all questions (14)

- a) State and prove C-R equation in cartesian coordinates. (07)
- **b)** Evaluate: $\int_C \frac{dz}{z^2+9}$ where C: |z| = 5. (05)
- c) Find invariant points for $f(z) = \frac{3z-5}{z+1}$. (02)

Q-5 Attempt all questions (14)

- a) Determine the analytic function whose real part is $e^{2x}(x\cos 2y y\sin 2y)$. (05)
- **b)** Find image of |z 3i| = 3 under the mapping $w = \frac{1}{z}$. (05)
- c) Transform the curve $x^2 y^2 = 4$ under the mapping $w = z^2$. (04)

Q-6 Attempt all questions (14)

- a) State and prove Cauchy's integral formula. (07)
- **b**) State and prove ML- inequality. (05)
- c) State Liouville's theorem. (02)

Q-7 Attempt all questions (14)

- a) Evaluate: $\int_{C} \frac{z^{3} + z^{2} + z + 1}{z(z-1)^{2}} dz$, $C: |z| \le 2$. (06)
- **b)** State and prove Cauchy's theorem. (05)
- c) Find arc length for the curve $c: z(t) = 1 3it, t \in [-1,1].$ (03)

Q-8 Attempt all questions (14)

- a) Find the Mobius transformation that maps the points $z_1 = -1$, $z_2 = 0$, $z_3 = 1$ onto $w_1 = -1$, $w_2 = -i$, $w_3 = 1$ respectively. (07)
- **b)** Prove that $\left| \int_{c} \frac{1}{z^2 + 1} dz \right| \le \frac{2\pi}{3}$, where *c* is the arc of the circle |z| = 2 that lies in first quadrant. (05)
- c) If $u(x,y) = \frac{x(1+x)+y^2}{(1+x)^2+y^2}$, $v(x,y) = \frac{y}{(1+x)^2+y^2}$ then find f(z) in terms of z. (02)

